Efficient rejection strategies for prototype-based classification

نویسندگان

  • Lydia Fischer
  • Barbara Hammer
  • Heiko Wersing
چکیده

Due to intuitive training algorithms and model representation, prototypebased models are popular in settings where on-line learning and model interpretability play a major role. In such cases, a crucial property of a classifier is not only which class to predict, but also if a reliable decision is possible in the first place, or whether it is better to reject a decision. While strong theoretical results for optimum reject options in the case of known probability distributions or estimations thereof are available, there do not exist wellaccepted reject strategies for deterministic prototype-based classifiers. In this contribution, we present simple and efficient reject options for prototype-based classification, and we evaluate their performance on artificial and benchmark data sets using the example of learning vector quantization. We demonstrate that the proposed reject options improve the accuracy in most cases, and their performance is comparable to an optimal reject option of the Bayes classifier in cases where the latter is available. Further, we show that the results are comparable to a well established reject option for support vector machines in cases where learning vector quantization classifiers are suitable for the given classification task, even providing better results in some cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rejection and online learning with prototype-based classifiers in adaptive metrical spaces

The rising amount of digital data, which is available in almost every domain, causes the need for intelligent, automated data processing. Classification models constitute particularly popular techniques from the machine learning domain with applications ranging from fraud detection up to advanced image classification tasks. Within this thesis, we will focus on so-called prototype-based classifi...

متن کامل

Optimum Reject Options for Prototype-based Classification

We analyse optimum reject strategies for prototype-based classifiers and real-valued rejection measures, using the distance of a data point to the closest prototype or probabilistic counterparts. We compare reject schemes with global thresholds, and local thresholds for the Voronoi cells of the classifier. For the latter, we develop a polynomial-time algorithm to compute optimum thresholds base...

متن کامل

Local Rejection Strategies for Learning Vector Quantization

Classification with rejection is well understood for classifiers which provide explicit class probabilities. The situation is more complicated for popular deterministic classifiers such as learning vector quantisation schemes: albeit reject options using simple distance-based geometric measures were proposed [4], their local scaling behaviour is unclear for complex problems. Here, we propose a ...

متن کامل

Rejection strategies for learning vector quantization

We present prototype-based classification schemes, e. g. learning vector quantization, with cost-function-based and geometrically motivated reject options. We evaluate the reject schemes in experiments on artificial and benchmark data sets. We demonstrate that reject options improve the accuracy of the models in most cases, and that the performance of the proposed schemes is comparable to the o...

متن کامل

Optimal local rejection for classifiers

We analyse optimal rejection strategies for classifiers with input space partitioning, e.g. prototype-based classifiers, support vector machines or decision trees using certainty measures such as the distance to the closest decision border. We provide new theoretical results: we link this problem to the multiple choice knapsack problem and devise an exact polynomial-time dynamic programming (DP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2015